Tuesday, 4 September 2012

14.Testing methods


Static vs. dynamic testing
There are many approaches to software testing. Reviews, walkthroughs, or inspections are considered as static testing, whereas actually executing programmed code with a given set of test cases is referred to as dynamic testing. Static testing can be (and unfortunately in practice often is) omitted. Dynamic testing takes place when the program itself is used for the first time (which is generally considered the beginning of the testing stage). Dynamic testing may begin before the program is 100% complete in order to test particular sections of code (modules or discrete functions). Typical techniques for this are either using stubs/drivers or execution from a debugger environment. For example, spreadsheet programs are, by their very nature, tested to a large extent interactively ("on the fly"), with results displayed immediately after each calculation or text manipulation.

The box approach
Software testing methods are traditionally divided into white- and black-box testing. These two approaches are used to describe the point of view that a test engineer takes when designing test cases.

White-Box testing
White-box testing (also known as clear box testing, glass box testing, and transparent box testing and structural testing) tests internal structures or workings of a program, as opposed to the functionality exposed to the end-user. In white-box testing an internal perspective of the system, as well as programming skills, are used to design test cases. The tester chooses inputs to exercise paths through the code and determine the appropriate outputs. This is analogous to testing nodes in a circuit, e.g. in-circuit testing (ICT).
While white-box testing can be applied at the unit, integration and system levels of the software testing process, it is usually done at the unit level. It can test paths within a unit, paths between units during integration, and between subsystems during a system–level test. Though this method of test design can uncover many errors or problems, it might not detect unimplemented parts of the specification or missing requirements.

Techniques used in white-box testing include:
API testing (application programming interface) - testing of the application using public and private APIs
Code coverage - creating tests to satisfy some criteria of code coverage (e.g., the test designer can create tests to cause all statements in the program to be executed at least once)
Fault injection methods - intentionally introducing faults to gauge the efficacy of testing strategies
Mutation testing methods
Static testing methods
Code coverage tools can evaluate the completeness of a test suite that was created with any method, including black-box testing. This allows the software team to examine parts of a system that are rarely tested and ensures that the most important function points have been tested.Code coverage as software metric can be reported as a percentage for:
Function coverage, which reports on functions executed
Statement coverage, which reports on the number of lines executed to complete the test
100% statement coverage ensures that all code paths, or branches (in terms of control flow) are executed at least once. This is helpful in ensuring correct functionality, but not sufficient since the same code may process different inputs correctly or incorrectly.

Black-box testing
Main article: Black-box testing
Black box diagram
Black-box testing treats the software as a "black box", examining functionality without any knowledge of internal implementation. The tester is only aware of what the software is supposed to do, not how it does it. Black-box testing methods include: equivalence partitioning, boundary value analysis, all-pairs testing, state transition tables, decision table testing, fuzz testing, model-based testing, use case testing, exploratory testing and specification-based testing.
Specification-based testing aims to test the functionality of software according to the applicable requirements. This level of testing usually requires thorough test cases to be provided to the tester, who then can simply verify that for a given input, the output value (or behavior), either "is" or "is not" the same as the expected value specified in the test case. Test cases are built around specifications and requirements, i.e., what the application is supposed to do. It uses external descriptions of the software, including specifications, requirements, and designs to derive test cases. These tests can be functional or non-functional, though usually functional.
Specification-based testing may be necessary to assure correct functionality, but it is insufficient to guard against complex or high-risk situations]
One advantage of the black box technique is that no programming knowledge is required. Whatever biases the programmers may have had, the tester likely has a different set and may emphasize different areas of functionality. On the other hand, black-box testing has been said to be "like a walk in a dark labyrinth without a flashlight.Because they do not examine the source code, there are situations when a tester writes many test cases to check something that could have been tested by only one test case, or leaves some parts of the program untested.
This method of test can be applied to all levels of software testing: unit, integration, system and acceptance. It typically comprises most if not all testing at higher levels, but can also dominate unit testing as well.

Grey-box testing
Main article: Gray box testing
Grey-box testing (American spelling: gray-box testing) involves having knowledge of internal data structures and algorithms for purposes of designing tests, while executing those tests at the user, or black-box level. The tester is not required to have full access to the software's source code not in citation given] Manipulating input data and formatting output do not qualify as grey-box, because the input and output are clearly outside of the "black box" that we are calling the system under test. This distinction is particularly important when conducting integration testing between two modules of code written by two different developers, where only the interfaces are exposed for test. However, modifying a data repository does qualify as grey-box, as the user would not normally be able to change the data outside of the system under test. Grey-box testing may also include reverse engineering to determine, for instance, boundary values or error messages.

By knowing the underlying concepts of how the software works, the tester makes better-informed testing choices while testing the software from outside. Typically, a grey-box tester will be permitted to set up his testing environment; for instance, seeding a database; and the tester can observe the state of the product being tested after performing certain actions. For instance, in testing a database product he/she may fire an SQL query on the database and then observe the database, to ensure that the expected changes have been reflected. Grey-box testing implements intelligent test scenarios, based on limited information. This will particularly apply to data type handling, exception handling, and so on.


Software Quality Assurance 
Software Quality Assurance 
Software Testing FAQs
QA Software

Er Ratnesh Porwal
Software Engineer
www.AeroSoftCorp.com
www.AeroSoft.in
www.AeroSoft.co.in
www.AeroSoftseo.com
On Line Assistence    :
Gtalk                          :   ratnesh.aerosoft@gmail.com
Y! Messenger                   :   ratnesh.AeroSoft@yahoo.com
Rediff Bol                  ratnesh.AeroSoft@rediffmail.com

No comments:

Post a Comment